# Description
Luogu 传送门
# Solution
一直以为这是道数学题,结果是 ……
观察题目给的式子,不难发现,这就是个长为 ,宽为 的矩阵,让你求从左下角走到右上角的方案数。
转移方程也非常简单:
但是转移完之后我们还是要 枚举统计答案,还是无法通过此题。
考虑如何优化统计答案的过程,使其变为 的。
我们需要消掉 或 中的一个,考虑平移。
我们把 到 的矩形平移到 到 ,不难证明这样的方案数是不会变的。
然后我们把处于第三象限的所有点都当作起点,也就是初值赋为 1,再跑一边上述 ,然后 枚举统计答案即可。
需要注意的是题目中求的是一个上三角的和,所以要减去对角线的值再除以 2.
# Code
#include <bits/stdc++.h> | |
#define ll long long | |
using namespace std; | |
namespace IO{ | |
inline ll read(){ | |
ll x = 0; | |
char ch = getchar(); | |
while(!isdigit(ch)) ch = getchar(); | |
while(isdigit(ch)) x = (x << 3) + (x << 1) + ch - '0', ch = getchar(); | |
return x; | |
} | |
template <typename T> inline void write(T x){ | |
if(x > 9) write(x / 10); | |
putchar(x % 10 + '0'); | |
} | |
} | |
using namespace IO; | |
const int N = 2e5 + 10; | |
const int R = 2021; | |
const int mod = 1e9 + 7; | |
int n, ans; | |
int a[N], b[N], fac[R << 2]; | |
int dp[R << 1][R << 1]; | |
inline int qpow(int a, int b){ | |
int res = 1; | |
while(b){ | |
if(b & 1) res = 1ll * res * a % mod; | |
a = 1ll * a * a % mod, b >>= 1; | |
} | |
return res; | |
} | |
inline int C(int n, int m){ | |
return 1ll * fac[n] * qpow(fac[m], mod - 2) % mod * qpow(fac[n - m], mod - 2) % mod; | |
} | |
signed main(){ | |
n = read(); | |
for(int i = 1; i <= n; ++i) a[i] = read(), b[i] = read(); | |
fac[0] = 1; | |
for(int i = 1; i < (R << 2); ++i) fac[i] = 1ll * fac[i - 1] * i % mod; | |
for(int i = 1; i <= n; ++i) dp[R - a[i]][R - b[i]]++; | |
for(int i = 1; i < (R << 1); ++i) | |
for(int j = 1; j < (R << 1); ++j) | |
dp[i][j] = (dp[i][j] + dp[i - 1][j] + dp[i][j - 1]) % mod; | |
for(int i = 1; i <= n; ++i){ | |
ans = (ans + dp[R + a[i]][R + b[i]]) % mod; | |
ans = (ans - C(2 * (a[i] + b[i]), 2 * a[i]) % mod + mod) % mod; | |
} | |
write(1ll * ans * qpow(2, mod - 2) % mod), puts(""); | |
return 0; | |
} | |
// X.K. |